H-NAT 2023

POTENTIAL • EXPLORATION • PRODUCTION

27 – 28 NOVEMBER 2023 | 3rd edition

1st Natural Hydrogen Worldwide Summit

WELCOME

27 NOVEMBER 2023

04:20 - 04:40

CONFERENCE TITLE

SysMoGTM probe : an innovative technology for the exploration and monitoring of dissolved gases at great depth M. PIEDEVACHE¹ Director Solexperts - France Ph. de DONATO² CNRS Research Director GeoRessources Lab. Nancy, France J. PIRONON² CNRS Research Director GeoRessources Lab. Nancy, France

Collaborators: Alain Laurent¹, Yanick Lettry³, Aurélien Randi², Raymond Michels², Marie-Camille Caumon², Odile Barres², Catherine Lorgeoux², Mathieu Lazerges², Fady Nassif⁴, Antoine Forcinal⁴, Julien Moulin⁴

1. Solexperts France, 10 allée de la Forêt de la Reine, F-54500 Vandœuvre-lès-Nancy, France

2. Université de Lorraine, CNRS, GeoRessources laboratory, F-54042 Nancy, France

3. Solexperts AG, Mettlenbachstrasse 25, CH-8617 Mönchaltorf, Switzerland

4. La Française de l'Energie (FDE), ZI Faulquemont, F-57380 Pontpierre, France

SysMoGTM a generic probe concept for the analysis of dissolved gases: the result of more than 20 years of fundamental and applied research until the discovery of H_2 in the Lorraine basin (France)

a synthetic summary of the main key stages in the development of the SysMoG[™] probe

27 - 28 NOVEMBER, 2023

ESPLANADE HOTEL FREMANTLE, PERTH, AUSTRALIA

1st Natural Hydrogen Worldwide Summit

Nuclear waste storage												
	Greenhouse gas monitoring											
SysMoG				Geolog	ical storage of Urba	al storage of CO ₂ (CCUS) Urban waste storage						
¢°									Hydrogen storage Low carbon energy		Natural Hydrogen	
2002	2008	2009	2010 :	2011 :	2013	2014	2015	2017 :	2020 :	2021	202	3
1) VINSOT A., et al. (sampled in the Opali Physic and Chemistr 2) PIR detection fro The N Source And Ata 5) from s 7) c detection fro 2) PIR detection fro	CO2 data on gas and pore v inus Clay at the Mont Terri y of the Earth , 33 554-560 ONON J., et al. On-line gre om soils and rocks formatio Procedia , 1 2375 4) GAL F., et al. Surface latural CO2 Reservoir Of M Tracking And Gas Exchang mosphere Oil & Gas Scie PIRONON J., et al. On-line soils and rocks formations Greenhouse Gas 6) de DONATO Ph., et geochemical monitoring Souilly (Paris basin) E CAILTEAU C., et al. FT-IR m of CO2 and CH4 in undergro 8) CAILTEAU C., et Mathematical develop etermination under non-coc sensors	water rock lab (2008) enhouse gas ons - Energy -2382 (2009) e Gas Geoche lontmiral (Dr e Between Sc nce and Teck IFP, 65 63 greenhouse g - <i>Internatior</i> <i>Control</i> , 4 21 e al. CO2 flow program of f Energy Procee netrology asp ound laborat metrology asp ound laborat finergy froce netrology asp ound laborat	mistry Above ôme-France), oil, Biosphere hnology Rev. 5-652, (2010) gas detection nal Journal of 17-224 (2010) baseline: key fa uture CO2 stora dia, , 4 , 5438–5 pects for on-line ory conditions nethods, 3, 877 gas monitoring in D2 and CH4 part ssure conditions nethods, 3, 888	actors of the ge at Claye- 446, (2011), monitoring - Analytical -887, (2011) n clay rocks: cial pressure s using FT-IR -895, (2011)	9) PIRONON to flow/c warning levels geochemic baseline: sp CO2 sto Souilly (Energy P 4409- 10) TAC Efficiency FTI spectrome quantification Appl monitor dioxide s Internatior Greenhouse 12,35	J., et al. How establish CO2 concentration based on the al monitoring pecific case of rage at Claye- Paris basin) rocedia , , 37 , -4419, (2013), QUET N., et al. of combined IR and Raman etry for online of soil gases: ication to the ing of carbon storage sites - nal Journal of Gas Control , 59-371 (2013)	12 LABAT Carbon and Stor Lacq pilo VII Envirce monito Publisher , (Ap 13) VIN Natural g and injection in C Swi Geoso 11) GAL F., et al environmental gaseous emana injection pilot – the French Pyre - Internal Journ Greenhouse Ga 177-190, (2014	N. et al. Capture age : The t – Chap. onmental oring and - TOTAL 141-215, ril 2015), SOT A., et al. as extraction l artificial gas experiments opalinus Clay. ss Journal of iences , 1-16, (2017). - Study of the variability of tions over CO2 Application to mean forelend. al of is Control , 21,)	14) LAFORTUNE S., et al - Monitoring of hydrogen leaks from a deep underground storage. Par 1: In situ validation of an experimental protocol via the injection and monitoring of helium and tracers in a shallow aquife Applied Sciences (2020), Special Issues , 10, 6058- 6076, (2020).	15) ADISAPUTRO Development and Baseline Subsoil G Measurement: Ar Continuous Monit for CO2 and CH4 i Ecosystem (Mont Region, France) - -11, 1753. (2021) r. 16) GOMBERT P., of hydrogen leaks underground stor Applied Sciences Issues , 11, 2686, 17) LACROIX E., et development base continuous monit gases in an aquife geochemical base hydrogen leakage Methods . doi: 10. (2021) 18) GOMBERT Ph Energy Storage fo Applied Sciences	D., et al - d Field Testing of Gas in In-situ and toring Concept in A Forest iers, Lorraine Applied Sciences et al - Monitoring from a deep rage. (2021) Special (2021). t al - Metrological ed on in situ and oring of dissolved r: application to the line definition for e survey. Analytical .1039/d1ay01063h , et al - Advances ir or Renewable Energy , ISBN 978-3-0365-1	19) LE V.L., et al - Quantitative monitoring of dissolved gases in a flooded borehole: calibration of the analytical tools - Science and Technology for Energy Transition (STET), 78,, (2023) 20) HELMLINGER B., et al - SysMoG TM , Probe for gas analysis in wells at high depth European Bureau Patent, N° EP22210240.2 - Avril 2023 -

<u>Context</u>: Underground laboratory of Meuse/Haute-Marne (ANDRA) - France continuous and in-situ monitoring of CO₂ and CH₄ in the clay formation of *Callovo-Oxfordian* at -490 m

Main Galleries of the Bure Laboratory in 2022 (ANDRA)

#hnatsummit2023

Nuclear waste storage

<u>Context</u>: Underground laboratory of Meuse/Haute-Marne (ANDRA) - France continuous and in-situ monitoring of CO₂ and CH₄ in the clay formation of *Callovo-Oxfordian* at -490 m

#hnatsummit2023

Nuclear waste storage

1st Natural Hydrogen Worldwide Summit

#hnatsummit2023

Geological storage of CO₂ (CCUS)

1st Natural Hydrogen Worldwide Summit

#hnatsummit2023

CO₂ in soil is governed by water table variations

Geological storage of CO₂ (CCUS)

1st Natural Hydrogen Worldwide Summit

<u>Context</u>: Hydrogen monitoring in aquifer environment

Experimental site of INERIS (Cattenoy, France)

Risks and Opportunities of geological STORAGE of Hydrogen in salt cavities in France and Europe

Optimization the SysMoG[™] device for dissolved gas monitoring

#hnatsummit2023

SysMoG[™] probe for aquifer monitoring

H₂ storage

H₂ storage

2020

1st Natural Hydrogen Worldwide Summit

<u>Context</u>: Hydrogen monitoring in aquifer environment Experimental site of INERIS (Cattenoy, France)

Risks and Opportunities of geological STORAGE of Hydrogen in salt cavities in France and Europe

1st Natural Hydrogen Worldwide Summit

<u>Context</u>: Multi-parameter monitoring in drilling via optical fiber Experimental site of SOLEXPERTS (Vandœuvre-lès-Nancy, France) Multi-sensors calibration in an experimental well

Optimization of Raman, IR and Gas Chromatography metrologies, tests of optochemical sensors

H-NAT 2023 POTENTIAL • EXPLORATION • PRODUCTION 27 - 28 NOVEMBER, 2023 ESPLANADE HOTEL FREMANTLE, PERTH, AUSTRALIA

1st Natural Hydrogen Worldwide Summit

Liquic

 Faman Gas
 Test of semi-permeable membrane
 Metrology: sensor calibration, good accordance between FT-IR, microGC,

Raman air- and liquid-head

since 2021....

Miniaturization of SysMoG[™]

Working in high pressure conditions

Dissolved gas monitoring including H₂

Quick gas exploration system based on SysMoG[™] probe......

1st Natural Hydrogen Worldwide Summit

<u>Context</u>: Methane monitoring in deep aquifer Site of FDE (Folschviller, France) - Regalor project CBM exploitation of the Lorraine coal gas

ESPLANADE HOTEL FREMANTLE, PERTH, AUSTRALIA

1st Natural Hydrogen Worldwide Summit

H-NAT 2023

POTENTIAL • EXPLORATION • PRODUCTION

Dissolved H₂ profile in borehole Fols1A

Perforations borehole Fols1A

High pressure probe (depth 1500m)
Miniaturization (OD 54 mm)
Continuous measurement
Increase of dissolved H₂ with depth
H₂ resource estimate around 250 Mt

1st Natural Hydrogen Worldwide Summit

<u>Context</u>: Gas sampling in deep aquifer Different sites of FDE (France)

He, H₂ exploration

1 Borehole gas probe (Patent submitted) 2 Down hole pressure/temperature sensor 3 Samplers 75 ml 4 Rochester cable

<image>

SysMoG[™] GH₂ASBUSTERS

#hnatsummit2023

H₂ Exploration

1st Natural Hydrogen Worldwide Summit

Optimization sampling time
 Mobile GH₂ASBUSTER unit
 Measurement by well production

Gas sampling at 1250 m depth

H₂ Exploration

1st Natural Hydrogen Worldwide Summit

<u>Context</u>: Fast gas monitoring

Gas storage or production Volcanology – seismic survey – Lake & sea

1 Borehole gas probe (Patent submitted) 2 Down hole gas sensor 3 Signal cable 4 IOT Logger with data transfer

ShallowMoG[™] probe

On-line measurement in Solexperts test borehole with H₂ pulse injections

On-line measurements
 CO₂, CH₄, H₂, NH₃
 IOT data access

Thanks for your attention

For more information and discussion, we look forward to seeing you at our booth n°11

