1. Problemstellung

Bild 1. Gleitmikrometer und Trivec.
A Im Bohrloch eingemontiertes Messrohr.
1 Keilförmige Messmarken, 2 HPVC-Verrohrung, 3 Injektionsgut, 4 Fel, Beton oder Lorkergeöss
B 5 Gleitposition, 6 Messposition

1. Présentation du problème

La nécessité de mesurer exactement les déformations dans la fondation et dans le béton des grands barrages est incontestée. Au contraire, des observa- tions ponctuelles où les composantes de la déformation, ou bien la déformation différentielle sont mesurées dans des points isolés, la méthode de l'observation sur une ligne apporte des avantages remarquables [1]. Sous l'expression, «observation sur une li- gne», nous comprenons des mesures de déformations continues le long d'une ligne ou dans un forage.

Pour réaliser de façon conséquente l'observation continue des déformations, le micromètre de forage et le Trivec ont été développés par K. Kovári et ses collaborateurs à l'Ecole Polytechnique Fédérale de Zurich, Département de Mécanique des Roches et Travaux Souterrains. Ils sont décrits par ailleurs en détail, [2], [3]. Seul l'essentiel de ces nouveaux instruments est présenté ici. Un tubage en PVC est installé et cimenté dans un forage (figure 1). Des sièges coniques de mesure sont fixés au tubage avec un écartert régulier de 1 m. La cimé- tation du tube de mesure et des cônes permet à ceux-ci de suivre les défor-

1. Introduction

In the construction and monitoring of large dams there is a need to measure accurately deformations both in the rock foundation and in the dam itself. In contrast to pointwise observations, in which for example a displacement component or a strain is measured at isolated points in the structure, the concept of linewise observation offers great advantages [1]. By linewise obser- vation is meant the measurement of the complete distribution of deformation values along a measuring line, e.g. along a borehole.

In order to perform linewise observations in a consistent way, the sliding micrometer and Trivec were deve- loped by Prof. K. Kovári and his co-workers at the Department of Rock Engineering and Tunneling at the Federal Institute of Technology, Zurich. These instruments are described in detail in various publi- cations [2], [3]. Here only the essentials of these new instruments are de- scribed. For both instruments a PVC

Figure 1. Micromètre de forage et Trivec.
A Tube de mesure cimenté dans forage
1 siège conique de mesure, 2 tube en HPVC, 3 cimentation, 4 béton, rocher ou sol
B 5 position d'introduction, 6 position de me- sure

Figure 1. Sliding micrometer and Trivec.
A Measuring tube installed into borehole:
1 cone shaped measuring marks, 2 HPVC tube, 3 grout, 4 rock, concrete or soil.
B 5 sliding position, 6 measuring position.

Bild 2. A Portables Gleitmikrometer in Mess- position
B Messverfahren für Gleitmikrometer und Tri- vec
1 Messverrohrung mit Messmarken, 2 schritt- weises Setzen der Sonde

Figure 2. A Micromètre de forage portable in position of measure.

Figure 2. B Procédé de mesure pour mi- cromètre de forage et Trivec.
1 tubage avec cône de mesure, 2 positions de la sonde

«wasser, energie, luft – eau, énergie, air» 77. Jahrgang, 1986, Heft 5/6, CH-5401 Baden
soll hier nur das Wesentliche dieser neu konzipierten Instrumente herausgestellt werden. In einem Bohrloch wird eine PVC-Verrohrung versetzt und eingemörtelt (Bild 1). In regelmässigen Abständen von 1,0 m ist sie mit Messmarken bestückt. Durch die Verbindung des Messrohres mit dem Fels übernehmen die Messmarken die Verformungen des umgebenden Mediums. Die Messmarken sind so ausgebildet, dass ein portables Instrument in der Länge von einem Meter, mit höchster Präzision gesetzt (Bild 2 A), und die entsprechenden Messwerte reproduzierbar ermittelt werden können. Während der Ausmessung des Bohrloches gleitet die Sonde durch das Messrohr und wird schrittweise Meter für Meter in den Messmarken gesetzt (Bild 2 B), bis alle durch die Messmarken definierten Messstrecken abgelesen sind. Erfahren die Messmarken zwischen zwei zeitlich getrennten Messungen eine gegenseitige Verschiebung, so zeigt sich dies als Differenz von zwei Able- sungen.

Das Gleitmikrometer (Bild 3), eine portable und robuste Sonde, kann in beliebig gericheten Bohrungen bis zu Längen von über 100 m eingesetzt werden. Die Messgenauigkeit beträgt 3 µm pro Meter, oder in Dehnung ausgedrückt 3·10⁻⁶. Das Trivec stellt im wesentlichen ein Gleitmikrometer dar, das zusätzlich mit einem Klinometersensor versehen ist. Damit erhält man in Lotrechten Bohrungen den Verlauf der orthogonalen Verschiebungskomponenten. Portable Eichvorrichtungen können die Funktionstüchtigkeit und die Präzision der Instrumente über Jahre hinweg jederzeit bestätigen.

2. Anwendungen im Talsperrenbau

Im Beton, und selbst in einem massigen, harten Fels, dessen globaler E-Modul 20 000 bis 40 000 N/mm² beträgt, können Dehnungen, welche durch die Spannungsänderungen von weniger als 0,1 N/mm² entstehen, Meter für Meter entlang einer Bohrung bereits erfasst werden. Mit dem Trivec lässt sich zusätzlich die Verteilung der Horizontalverschiebungen, zum Beispiel im Fundationsbereich, ermitteln. Solche lückenlosen Beobachtungen der Verschiebungen geben wichtige Hinweise über die Verformbarkeit des «in situ»-Felsmaterials und «Beton», über die Öffnung und Schliessung vorhandener Risse und Klüfte. Mit der tube is introduced into a borehole and cemented in place (figure 1). The tube is fitted with measuring marks at regular intervals of 1.0 m. As a result of cementing the measuring tube to the rock the deformation of the surrounding medium is transmitted to the measuring marks. The measuring marks are so constructed that a portable instrument also of 1.0 m gauge length may be placed in position with a very high precision (figure 2A), allowing reproducible measurements to be made. The measurements are carried out by sliding the instrument along the tube, inserting it stepwise in the measuring positions at 1.0 m intervals (figure 2B) until all the sections defined by the measuring marks have been measured. If there is a difference between two readings taken at different times, this indicates a relative movement between the two measuring marks.

The sliding micrometer (figure 3) is a robust, portable strain measuring instrument, which can be installed in boreholes of arbitrary direction to a length of over 100 metres. The Trivec probe is similar to the sliding micrometer, but is fitted in addition with a clinometer sensor and it is suitable for use in vertical boreholes. With this instrument it is possible to measure the distribution of an orthogonal set of displacement components. The proper functioning and precision of the instruments can be checked at any time over a period of years by means of portable calibration devices.

2. Application in dam engineering

In concrete and even in a massive hard rock with a global Young’s Modulus E amounting to 20 000 to 40 000 N/mm², it is possible to measure metre by metre along a borehole strains re-

Figure 3. Gleitmikrometer.
Figure 3. Sliding micrometer.

On trouvera de nombreuses applications de mesures avec le microfissuré de forage dans les comptes rendus de CGB 1985, Lausanne. Il s'agit du problème de la surélévation de barrages-poids existants (Vaal Dam, Afrique du Sud), pour lesquels la connaissance de la répartition des déformations à long terme dans le béton et la fondation a une importance particulière [4]. Dans le cas des barrages en construction, la mesure des déformations permet de vérifier la stabilité des fondations et de détecter les potentiels points faibles.

Suiting from stresses of less than 0.1 N/mm². The Trivec probe also permits measurement of the distribution of horizontal displacements, e.g. in the rock foundation.

Such continuous observations of deformation provide important information on the deformational behaviour of the in situ rock and concrete materials as well as the opening and closure of existing cracks and joints. By measuring deformations in the constructional phase due to rock excavation and subsequently due to the self-weight of the dam, zones of weakness may be localized at an early stage. Measurements taken in the rock foundation and the dam during the reservoir filling and emptying periods enable a good picture of the deformational behaviour of the dam to be obtained. The following chapters illustrate briefly such results for three dams.

Further, two applications of strain measurements using the sliding micrometer at large dams are discussed in the Transactions of ICOLD.
l'autre cas traité (Zillergrundl, Autriche), il s’agit d’une étude sur la fissuration d’origine thermique dans le béton de masse en phase de construction [5]. Le micromètre de forage a été appliqué à la mesure du développement des déformations différentielles du béton frais et du béton après prise à travers le barrage, en fonction des températures.

2.1 Kölbnreinsperre, Bogenmauer, Österreich
Die Kölbnreinsperre der Draukraftwerke Klagenfurt, Österreich (Bild 4) mit einer maximalen Kronenhöhe von 200 m und einer Spannweite von 620 m, ist auf der rechten Talflanke auf massivem Gneis und auf der linken Flanke, getrennt durch ein Band kristallinen Schiefers, auf Platten-Gneis fundiert.

1985, Lausanne. The first concerns the raising of existing gravity dams with post-tensioned cables (Vaal dam, South Africa). Here the knowledge of the distribution of strains over long periods in the concrete and rock is of great importance [4]. The second example treats the problem of thermal cracking of mass concrete [5]. For this investigations the distributions of thermal expansion of fresh and hardened concrete across the dam were monitored with the sliding micrometer.

2.1 Kölbnrein arch dam, Austria
Kölbnrein dam is part of the Drau hydropower scheme in Klagenfurt (figure 4) and has a maximum height of 200 m and a crest length of 620 m. The dam is founded on massive granitic gneiss in the right valley flank and separated by a highly schistose zone on platy schistose gneiss in the left flank.

The dam was completed in 1977, partial filling having already taken place a year earlier. During the subsequent years of reservoir filling the dam exhibited an unexpected behaviour with respect to deformations and large water losses [6] and [7]. Cracks developed in the concrete and the foundation rock. Within the framework of an extensive instrumentation the distri-

Im Block 17 wurde eine Messverrohrung für das Trivec ausgerüstet. Die Verteilung der differentialen Horizontalverschiebungen αx (Bild 6) und die Verteilung der Dehnungen εxy verdeutlichen, dass die ausschlaggebenden Verschiebungen bis etwa 15 m unter die Aufstandsfläche ausreichen. Ab dieser Tiefe ist eine deutliche Abnahme der differentialen Horizontalverschiebungen zu beobachten.

2.2 Bockhartsee, Erdamm mit Betonkern als Innendichtung

Im Jahre 1982 wurde der Erdamm Bockhartsee durch die Salzburger AG für Elektrizitätswirtschaft (SAFE) erbaut (Bild 7). In Rahmen eines Forschungsprojektes des Institutes für Boden- und Felsmechanik an der Universität Innsbruck kam eine neu konzipierte Innendichtung mit einem membranartigen Betonkern zur Anwendung ([10]). Im Mittelpunkt der Untersuchungen stand die Entwicklung sées en détails dans les publications [8] et [9]. Des mesures typiques pratiquées le long de deux forages dans le bloc 18 sont reproduites dans la figure 5. Un forage subhorizontal traverse le béton du pied aval du mur jusqu'au rocher en amont du barrage. Le développement des déformations montre par de fortes discontinuités, l'ouverture de fissures pendant la phase de remplissage du réservoir, surtout au pied amont du barrage. L'autre forage exécuté depuis la galerie de contrôle, incliné vers l'aval, atteint avec une longueur d'environ 80 m également le rocher de fondation. Les déformations différentielles mesurées montrent l'ouverture des fissures dans le béton et le rocher, due à la vidange du lac. Dans le bloc 17 un tube de mesure pour le Trivec a été installé. La répartition des déformations horizontales différentielles αx et également les déformations différentielles verticales εxy le long du forage, dans le rocher, indique que les déplacements majeurs ont lieu jusqu'à la profondeur de 15 m environ (figure 6). En-dessous une forte diminution des déformations est à observer.

2.2 Bockhartsee, barrage en renforcement avec écran en béton

La Société hydroélectrique de Salzburg (SAFE) a construit dans les années 1982/83 le barrage d'une hauteur de 31 m (figure 7). Dans le cadre d'un projet de recherche de l'Institut de Mécanique des Sols et Roches à l'Université d'Innsbruck, un nouveau procédé d'étanchement par un écran en béton a été réalisé ([8]). Les recherches portant sur le développement d'une couche glissante avec une membrane de bitume, pour diminuer l'effet de froissement négatif.

A detailed presentation of the measurements is to be found in [8] and [9]. Some typical results are shown in figure 5 for the strain distributions along two borehole axes in block 18. One borehole is subhorizontal and extends from the downstream foot of the dam to the rock on the upstream side. The resulting strain distribution reveals the presence of marked discontinuities due to crack opening in the upstream area of the dam following reservoir filling. Borehole 2 drilled from the control gallery in the downstream direction has a length of about 80 m and also extends into the rock. For this measuring line the deformations are given for the case of reservoir emptying and show the opening of cracks in the concrete and the rock foundation area.

A measuring tube was installed in block 17 for the Trivec device. The distributions of the horizontal displacements αx (figure 6 B) and the vertical displacements εxy (figure 6 D) clearly show that the important deformations occur up to 15 m below the base of the dam. Below this depth a pronounced decrease of differential horizontal displacement is observed.

2.2 Bockhartsee earth dam, concrete core diaphragm wall

The embankment dam Bockhartsee was built in 1982 by the Salzburger Hydroelectric Company (figure 7). Within the framework of a research project at the Institute of Soil and Rock Mechanics at the University of Innsbruck a new form of core seal consisting of a
Dans une section d'observation de la paroi d'une épaisseur de 0,60 m des tubes de mesure pour le micromètre de forage ont été posés, côté amont et côté aval, pour étudier la sollicitation lors du remplissage du réservoir. La figure 8 montre les bases théoriques pour l'exploitation des résultats [11]. Les lignes de mesure a et b sont espacées d'une distance d. La déformation différentielle ε se calcule par la valeur moyenne des quantités ε_a et ε_b, et la courbure par la différence des déformations différentielles. Avec l'hypothèse d'un comportement élastique du béton, le moment de flexion et par une double intégration de la courbure les déplacements horizontaux peuvent être déterminés. Les résultats des mesures à la microfente de forage sont reproduits dans la figure 9, il s'agit du développement des courbures et des déformations horizontales de l'écran en béton. Dans un puits voisin de la section de mesure au micromètre de forage la ligne de déformation horizontale a été mesurée directement avec un fil à plomb. Dans la figure 9 ces déformations des deux mesures sont comparées. La correspondance excellente entre les deux mesures indépendantes est une preuve de la bonne précision des mesures.

Figure 8. Determination of axial strain and curvature from the measured strains ε_a and ε_b along fibres a and b.

Figure 9. Bockhartsee, earth dam with concrete core. Sliding micrometer, measuring results. A Section through the concrete core. B Distribution of curvature. 1 sliding micrometer, 2 hanging perpend. C Lateral displacement. 1 sliding micrometer, 2 hanging pendulum, 3 upstream side, 4 downstream side.
einer bituminösen Gleitschicht zur Verringerung der negativen Mantelreibung während des Baues. In einem Messquerschnitt wurden in der 0,60 m starken Betondecke nahe der Luft- und Wassersseite je ein Gleitmikrometer-Messrohr während der Bauphase direkt einbetoniert, um Aufschluss über die Beanspruchung der Mauer beim Einstau zu erhalten. Bild 8 zeigt die theoretischen Grundlagen für die Auswertung [11], die Messlinien \(a \) und \(b \) sind mit der Distanz \(d \) voneinander entfernt. Die axiale Dehnung \(\varepsilon \) ergibt sich aus dem Mittelwert der gemessenen Werte \(\varepsilon_a \) und \(\varepsilon_b \) und die Krümmung wird errechnet aus der Differenz der Dehnungswerte. Unter der Annahme eines elastischen Verhaltens des Betongs können damit das Biegemoment und mit Hilfe einer zweimaligen Integration der Krümmungen die Biegelinie ermittelt werden.

2.3 Albigna, Gewichtsstaumauer, Schweiz

Im Bild 10 ist die Dehnungsverteilung entlang den Bohrungen im Fels infolge Absenkens des Stausees dargestellt. Die wichtigsten Erkenntnisse aus den Gleitmikrometermessungen sind, dass nur wenige aktive Trennflächen im Fels Ursache für das Irregularität der Verhalten der Staumauer sind. Der Fels

vegetation de la haute précision du micromètre de forage.

2.3 Albigna, barrage-poids, Suisse

Le barrage d’Albigna appartient à la ville de Zurich et a été construit de 1956 à 1959. La hauteur maximale est de 115 m et sa longueur au couronnement de 760 m. Le barrage est fondé sur un épaisseur de granite. Après un remplissage à lac plein de longue durée, des sources de faible débit sont apparues à l’avant du barrage. Pour déterminer les déformations au remplissage et à la vidange du lac, des tubes de mesure pour le micromètre de forage ont été installés en 1982, dans deux sections. La discussion détaillée des résultats se trouve dans la publication [12].

La figure 10 montre le développement des déformations différentielles dans le rocher à la vidange du lac. Le principal résultat est que seulement quelques fissures actives dans le rocher sont la cause du comportement anormal du barrage due to reservoir filling. The horizontal displacement was also measured by means of a hanging pendulum installed in a shaft located near the measuring section. The two independently obtained displacement curves are presented in the figure. The extremely good agreement is a confirmation of the high precision of the sliding micrometer.

2.3 Albigna gravity dam, Switzerland

Albigna dam, owned by the Department of Public Works, Zurich, and built in the period 1956 to 1959, has a maximum height of 115 m and a crest length of 760 m. It is founded on a granite ridge. In 1977, after a long period of reservoir filling, a small underseepage of the dam was observed. In order to get more information about the deformations caused by filling and emptying the reservoir, boreholes for the purpose of sliding micrometer measurements were installed in two sections. For a detailed discussion of
verhält sich im Ganzen als Monolith, und es sind zwei Risse, die sich in einer Diskontinuität der Verteilung mit Rissenschliessung von etwa 0,2 bis 3,55 mm/m zeigen.

Adresse des Verfassers: Dr. Arno Thut, Solexerts AG, Studien- und Beratungsbüro für Anwendungen der Geotechnik, Ifangstrasse 12, Postfach 230, CH-8603 Schwerzenbach (Zürich).

Adresse de l'auteur: Dr. Arno Thut, Solexerts AG, bureau d'études pour les applications de la géotechnique, Ifangstrasse 12, Postfach 230, CH-8603 Schwerzenbach (Zürich).

Literaturverzeichnis/References/Références

The results reference should be made to [12].

Figure 10 shows the distribution of strain in a borehole in rock produced by reservoir emptying. The most important findings of the sliding micrometer readings are that only a few active cracks in the rock are the reason for the irregular behaviour of the dam. The rock as a whole acts as a monolith and just two cracks show up as a discontinuity with opening of 0.2 to 3.56 mm/m.

Author's address: Dr. Arno Thut, Solexerts AG, Research and consulting office for applied rock and soil mechanics, Ifangstrasse 12, Postfach 230, CH-8603 Schwerzenbach (Zürich).